
DiffusionMesh
Ming-Yee Iu*

Wobastic Software Inc

ABSTRACT

The DiffusionMesh system incorporates an advanced gradient sys-
tem that is inspired by diffusion curves with a traditional vector
graphics tool. Shapes in DiffusionMesh are defined using closed
paths, like in traditional vector drawing tools, but DiffusionMesh
extends this model in several ways: different colors can be assigned
to the nodes of closed paths, closed paths can be joined together
into arbitrary meshes, a C1 continuity of colors is maintained across
seams between the different shapes of a mesh, and each shape can
constrain which colors are allowed inside the shape. Since shapes
are defined using closed paths, they can be easily composited into
more complex drawings. DiffusionMesh renders these shapes by
decomposing the shapes into triangle meshes and diffusing colors
across the mesh to create a smooth gradient. During changes to
the drawing, DiffusionMesh only needs to recompute the gradient
for the affected shapes instead of solving a global optimization for
every change. The use of triangle meshes for rendering means that
drawings can be scrolled and zoomed without needing to recompute
the gradient. Although rendering is too slow for real-time animation,
it is still fast enough for interactive use.

Keywords: Vector graphics, gradient meshes, diffusion curves.

Index Terms: Computing methodologies—Computer graphics—
Rendering—Rasterization;

1 INTRODUCTION

Vector graphics drawing tools are popular because they create art
that can be manipulated, resized, and animated without a loss of
quality. These tools have traditionally used a vector graphics model
where shapes are represented as closed paths, which can be filled
with colors and have strokes applied to their outlines [7]. In the
last few years, there has been considerable excitement around new
vector graphics models derived from diffusion curves [10]. With
these models, drawings are produced by drawing curves on a canvas.
These curves have color constraints defined at points along each
side of each curve. These colors are then diffused throughout the
canvas to create a rendered image. The diffusion curve approach
to vector graphics is particularly well-suited for creating complex,
subtle shading.

DiffusionMesh1is a vector drawing system that demonstrates how
advanced gradients with capabilities similar to diffusion curves can
be integrated into a vector drawing tool based on a traditional vector
graphics model. DiffusionMesh supports the traditional closed path
representation of shapes but extends it to give artists more control
over how colors are blended across shapes. Artists can use a familiar
vector graphics workflow with layers, groups, paths, and fills, but
they also have enough control over gradients that they can draw
subtle shading and soft shadows.

The main contributions of DiffusionMesh are

• a gradient model that adapts diffusion curve gradients for use
with shapes defined by closed paths that are typical of tradi-

*e-mail: diffusionmesh@user00.com

tional vector graphics tools. Notably, the model defines extra
constraints on the generated gradient that are specific to closed
path shapes

• a method for calculating a gradient that satisfies the above
gradient model

• a functioning vector drawing tool based on these gradients
that offers insights into system architecture issues and into the
practical experience of using such gradients

This paper describes a model for representing advanced gradients
using closed path shapes, presents a method for rendering a gradient
from this representation, and evaluates the feasibility of using this
model in interactive vector drawing tools.

2 GRADIENT MODEL

To support advanced gradients over closed path shapes, Diffusion-
Mesh requires its own model for vector objects and gradients. The
gradient model of DiffusionMesh is defined in terms of

1. how the underlying geometry and gradient parameters are
specified

2. the properties of the gradient that is generated to fit the geome-
try and parameters

2.1 How Gradients Are Specified
Similar to traditional vector drawing tools, DiffusionMesh uses
closed paths as the primary primitive for representing objects in
drawings. These closed paths are made up of a series of nodes that
are joined together by lines and curves, forming an outline for a
shape. This shape can be filled by solid colors or patterns. Since
objects are self-contained, they can be rendered independently and
stacked in layers.

DiffusionMesh extends this model by allowing colors to be as-
signed to the nodes of closed paths. When a shape has different
colors assigned to its nodes, DiffusionMesh will generate a gradient
over the surface of the shape using those colors. When a shape has
the same color assigned to all of its nodes, DiffusionMesh will fill
the shape entirely with that color as a solid fill.

Allowing artists to assign colors to the nodes of a closed path
only gives them the ability to directly control the colors along that
path. To assign specific colors to areas on the inside of an object,
artists must use multiple shapes to model an object, so that a path
exists in the area where they want to assign colors. To facilitate
this, DiffusionMesh allows closed paths to be joined together into
complex meshes (Fig. 1). Any closed path can share any of its edges
with any other closed path, allowing for meshes made up of complex
shapes that are joined together in arbitrary ways.

For example, an artist cannot assign a color on the inside of a
simple circle shape because there are no paths or nodes in the center
of the circle where a color can be assigned. Instead, the circle can be
modeled using two half-circles that are joined together into a circle
mesh. Then, a node can be added to the middle of the half-circles
and a color assigned to it, resulting in DiffusionMesh rendering an
approximation of a radial gradient for that circle (Fig. 2).

1A patent application has been filed for a system incorporating some of
the methods described in this paper



Figure 1: Different colors can be assigned to the nodes of a closed
path, and multiple closed paths can be joined together into meshes.

Figure 2: Radial-style gradients can be defined by splitting a shape in
half and assigning a different color at the center.

2.2 Gradient Properties
Once the mesh geometry and node colors have been specified, Diffu-
sionMesh can generate a gradient that satisfies that input. Diffusion-
Mesh generates gradients that satisfy certain properties, allowing
artists to anticipate what the gradient will look like and allowing
them to control the resulting gradient.

The first property is that the gradient is constrained so that at a
node, the gradient will have the same color as that node. Along the
edge of a path, the gradient is constrained to be a linear interpolation
of the colors assigned to the nodes on either end of the edge. With
these constraints, artists have full control over the colors along the
outside boundary of a closed path. They can assign any color to
nodes, constraining the color of the gradient in that portion of the
path. They can add more nodes to a path if they need more control
over colors.

Within a closed path, DiffusionMesh uses a diffusion process
to blend the colors of the nodes across the surface of the shape.
To ensure that the gradient is smooth, DiffusionMesh attempts to
minimize the change in color values across the surface.

In fact, DiffusionMesh imposes a much more restrictive con-
straint on the smoothness of the gradient. When shapes are joined
together into a mesh, it is desirable for the generated gradient to
appear smooth across the whole surface of the mesh. To ensure
this, DiffusionMesh imposes a C1 continuity of colors for gradients
across the whole mesh. In particular, the color derivatives at shared
edges between shapes must match. Although each shape already
imposes the constraint that gradients near an edge must be a linear
interpolation of the colors assigned to nodes on either end of the
edge, that constraint only guarantees that the colors at shared edges
of adjacent shapes are the same. Without the color derivatives also
being the same, seams or creases will appear in the mesh wherever
two shapes join.

The above properties define a PDE with fixed values at various
points along its surface. DiffusionMesh defines an additional prop-
erty for the gradient though. In DiffusionMesh, the gradient inside
any shape of a mesh will only be an interpolation of the colors de-
fined on the nodes of that shape. This provides artists some direct
control over which colors will appear in the individual shapes of
their drawings. In particular, if all the colors defined on the nodes

(a) All the nodes of the center rectangle in the mesh have the
same color, so the center rectangle should be a single color

(b) Naively trying to maintain a
C1 continuity of colors on the
sides of the center rectangle
will cause the color in the cen-
ter to fall outside that range of
colors

(c) DiffusionMesh requires a
solution similar to monotone
spline interpolation used for
1d functions to force colors
within the center rectangle to
be a single color

Figure 3: DiffusionMesh enforces the restriction that the colors inside
a closed path shape must be within the range of colors defined at the
nodes of the path making up the shape. Fig. 3a shows three closed
path shapes forming a mesh. Fig. 3b and Fig. 3c show a horizontal
cross-section of possible color values for the mesh.

of a shape are the same color, then the gradient within that shape
will just be that single color. As a result of this property, there
is a tension between mesh-wide smoothness constraints and the
local-to-each-shape restrictions on color values (Fig. 3).

DiffusionMesh does not provide any explicit control over color
derivatives. Although allowing control over color derivative val-
ues could potentially allow artists to fine-tune their gradients, it is
difficult to expose such controls in a user interface.

3 RENDERING

Given meshes of closed path shapes with colors assigned to their
nodes, DiffusionMesh can generate a gradient for the shapes and
render the shapes to the screen. DiffusionMesh renders the shapes by
converting them to Gouraud shaded triangles that can be rasterized
efficiently using modern graphics hardware. Converting shapes into
triangles also has the advantage that the triangles can be scaled and
translated for display entirely in graphics hardware. DiffusionMesh
uses an ad hoc method for rendering that yields visually satisfying re-
sults. Rendering is divided into two stages: triangulation, where the
mesh of shapes is broken down into a triangle mesh, and diffusion,
where a gradient is constructed over this mesh.

3.1 Triangulation

DiffusionMesh tries to convert shapes into a triangle mesh of roughly
equal-sized, uniformly spaced triangles. This allows DiffusionMesh
to use simpler, discrete methods for calculating the diffusion of
colors across these triangles. A standard constrained Delaunay trian-
gulation algorithm can be used, but, for convenience, DiffusionMesh
uses its own approach for generating a triangulation (Fig. 4).

Initially, the shapes are presented to the DiffusionMesh renderer
in a mesh data structure. Each shape is made up of a closed path
of nodes connected by straight or curved edges. Each node has
an assigned color, and edges can be shared between two shapes.
DiffusionMesh first converts all curves into a set of straight lines
using standard curve subdivision techniques. The new nodes in-
between these lines are assigned colors by linearly interpolating the
colors of the nodes of the original curve. At this point, each shape
has been converted into a polygon.



(a) Initial shapes (b) Convert
curves to lines

(c) Subdivide long
lines

(d) Create a grid
inside each shape

(e) Triangulate
space between
grid and shape

(f) Split grid
squares

(g) Split edge
near bottom that
connects two
exterior nodes

Figure 4: Steps for creating a triangle mesh

Then for each polygon, DiffusionMesh chooses a desired triangle
size for the triangle mesh that the polygon will be broken into. This
desired triangle size is defined in terms of an approximate length for
the edges of the triangles. If any edges of a polygon are longer than
the desired triangle edge length, then the edges are subdivided until
they are shorter than the desired triangle edge length. The new nodes
created by the subdivision are assigned colors based on the linear
interpolation of the colors from the original nodes for the edge.

DiffusionMesh uses a plane-sweep-style algorithm to generate
a grid of squares inside each polygon. The length of sides of the
squares in the grid is the same as the desired triangle edge length.
A standard sweep-line algorithm for polygon triangulation is used
to triangulate the space between the grid and the boundary of the
polygon. Successive rounds of Delaunay edge flipping are applied to
this triangulation until all poorly proportioned triangles are removed.
Then, each square in the grid is divided in half into two triangles.
Each polygon will then have been subdivided into a mesh of roughly
uniform triangles.

Finally, DiffusionMesh alters the mesh by identifying all edges
interior to a polygon that join nodes from the border of the polygon.
These interior edges are split, adding two new triangles to the mesh.
This splitting ensures that nodes on the outline of a polygon are
never directly connected to each other, so there will always be an
interior node with a color that DiffusionMesh can adjust to optimize
the generated gradient for the polygon.

3.2 Diffusion

With the triangle mesh generated, DiffusionMesh can now assign
colors to the interior nodes of each polygon using a diffusion process.
Since each polygon has been triangulated into a mesh of triangles
that are roughly uniformly spaced and equal-sized, DiffusionMesh
is able to use discrete methods for its diffusion. A smooth gradient
should have a C1 continuity of colors across its surface. To solve
these constraints over a mesh of discrete triangles, DiffusionMesh
assumes that colors are linearly interpolated across the surface of
each triangle, meaning that the x and y color derivatives are uniform
over the surface of each triangle. Then, DiffusionMesh only has
to minimize the differences in the color derivatives of all adjacent
triangles.

For each interior node, DiffusionMesh looks at the triangles in the
neighborhood of the node. It wants to set the color of the node so that
the differences between the colors derivatives of all the neighboring
triangles are minimized (Fig. 5). It does this by looking at all edges
adjacent to the node and all edges opposite to the node. For those
edges, it wants to minimize the square of the differences in the x
and y color derivatives of the triangles on either side of the edges.
Differentiating this value by the color of the node and setting the
result to zero yields a linear equation.

After generating equations for every interior node, DiffusionMesh

will have a sparse system of linear equations. Solving this system
using standard techniques like successive over-relaxation will yield
a smooth gradient over the entire surface of the mesh that fails to
satisfy the constraint that the gradient for each shape must only use
the colors of the nodes from that shape (Fig. 3).

In order to satisfy these local constraints, DiffusionMesh modifies
its successive over-relaxation so that every time it computes a new
color value for a node, it will also clamp that color value to be
within the range of colors defined by its neighboring nodes. As
a result, the successive over-relaxation will no longer converge to
a true solution to the system of linear equations but will instead
converge to a solution where no node can have extreme colors that
are outside the range of its neighbors. DiffusionMesh then renders
this triangle mesh and its colors to the screen.

Since the color diffusion process can be slow to converge, Diffu-
sionMesh uses hierarchical refinement to acclerate the calculations.
Diffusion is initially performed over a very coarse triangle mesh. Dif-
fusionMesh then creates successively more detailed triangle meshes
and computes gradients for them by using the previous gradient
solution as a starting point in the successive over-relaxation.

4 PERFORMANCE

The performance of DiffusionMesh has been evaluated by taking a
Java implementation of the system and measuring the time it needs to
generate gradients for a simple drawing. The drawing is made up of
three squares arranged in a row, with the edges shared between them
(Fig. 6). The nodes of the squares are all assigned random colors
between 0 and 1. The squares have a side length of 1000 units, and
the time needed to create gradients using a triangle mesh at different
levels of coarseness is evaluated. For each drawing, DiffusionMesh
first generates a gradient using a triangle mesh with an approximate
triangle edge length of 200, then iteratively generates more refined
meshes by halving this triangle edge length until it reaches the
desired refinement level. The diffusion stage is run until no colors at
any of the nodes changes by more than 0.001.

The time needed to generate a gradient for 20 drawings was
measured. The benchmark was repeated 70 times, with the first
20 values discarded in order to remove just-in-time compilation
times from the results. The code was executed using Java8u11 on a
Haswell Core i5-3470s CPU that runs at 2.9GHz-3.6GHz.

Table 1 summarizes the benchmark results. The Setup Time
shows the average time needed to run the benchmark with all the
color diffusion code being skipped. The Setup Time primarily mea-
sures the time needed to convert drawings into triangle meshes. The
Full Time shows the average time needed to run the full benchmark
including the diffusion of colors across the triangle mesh.

As can be seen from the performance results, the current gradient
diffusion code is too slow for real-time animation. The generation of
high quality gradients is also too slow for interactive use, but coarse



minimize ∑
adjacent edges

square of x and y gradient differences+ ∑
opposite edges

square of x and y gradient differences

∴ 0 = ∑
adjacent edges

∂ (square of x and y gradient differences)
∂ (color)

+ ∑
opposite edges

∂ (square of x and y gradient differences)
∂ (color)

Expression for edge i-h adjacent to a point i:(
yg − yh

A1
− yh − ym

A3

)(
Cg

2A1
(yh − yi)+

Ch

2A1
(yi − yg)+

Ci

2A1
(yg − yh)−

Cm

2A3
(yi − yh)−

Ci

2A3
(yh − ym)−

Ch

2A3
(ym − yi)

)
+

(
xh − xg

A1
− xm − xh

A3

)(
Cg

2A1
(xi − xh)+

Ch

2A1
(xh − xg)+

Ci

2A1
(xh − xg)−

Cm

2A3
(xh − xi)−

Ci

2A3
(xm − xh)−

Ch

2A3
(xi − xm)

)

where A1 =
1
2
(
xi(yg − yh)+ xg(yh − yi)+ xh(yi − yg)

)
A3 =

1
2
(
xg(yh − ym)+ xh(ym − yi)+ xm(yi − yh)

)
Cp = color at point p
xp = x-coordinate of point p
yp = y-coordinate of point p

Expression for edge g-h opposite to a point i:
yg − yh

A1

(
Ci

2A1
(yg − yh)+

Cg

2A1
(yh − yi)+

Ch

2A1
(yi − yg)−

Ck

2A2
(yh − yg)−

Ch

2A2
(yg − yk)−

Cg

2A2
(yk − yh)

)
+

xh − xg

A1

(
Ci

2A1
(xh − xg)+

Cg

2A1
(xi − xh)+

Ch

2A1
(xg − xi)−

Ck

2A2
(xg − xh)−

Ch

2A2
(xk − xg)−

Cg

2A2
(xh − xk)

)

where A1 =
1
2
(
xi(yg − yh)+ xg(yh − yi)+ xh(yi − yg)

)
A2 =

1
2
(
xg(yk − yh)+ xk(yh − yg)+ xh(yg − yk)

)

Figure 5: The color of each point i in the triangle mesh should minimize the differences in the derivative gradients of neighboring triangles

Figure 6: Simple drawing used to benchmark DiffusionMesh

Table 1: Benchmark results

Triangle Number of Setup Full
Edge Length Triangles Time Time
200 162 17.6 ms 43.4 ms
200 then 100 612 48.7 ms 107.5 ms
200 then 100 then 50 2412 218.8 ms 380.5 ms

gradients can be generated at adequate speeds. Approximately half
the execution time is used for creating the triangle mesh while the
other half is used for diffusion.

Further optimization is possible, especially by taking advantage
of parallelism. For example, each shape can be triangulated indepen-
dently in parallel, and the diffusion code for each point can also be
run in parallel.

Nevertheless, DiffusionMesh is able to build an interactive draw-
ing system without these optimizations. One technique it uses is to

hide the latency of gradient diffusion through the use of progressive
refinement. When an artist is creating gradients interactively, Dif-
fusionMesh will initially render shapes with no gradient diffusion.
It will then compute a gradient for the shapes in a separate back-
ground thread and update the screen as new gradients are calculated.
The DiffusionMesh algorithm already generates a gradient over a
coarse triangle mesh initially and then progressively derives finer
triangle meshes to generate more detailed gradients. DiffusionMesh
displays these intermediate triangle meshes as they are generated, so
as to provide artists with a rough visualization of the gradient that
they can work with interactively while a higher quality gradient is
computed in the background.

Once DiffusionMesh computes a gradient, it does not need to
recompute it if an artist is scrolling or zooming the drawing. If
an artist makes a change to a shape, DiffusionMesh does not need
to recalculate the gradients for the whole drawing but only for the
affected meshes.

5 RESULTS AND DISCUSSION

This section examines the characteristics of gradients generated by
DiffusionMesh and discusses the experience of using DiffusionMesh
in vector drawings.



(a) A mesh with a gray rectan-
gle in the center and white on
either end

(b) DiffusionMesh uses the
color information of each in-
dividual shape as local con-
straints to ensure that the
center rectangle is shaded a
flat gray color

(c) If a gradient with C1 con-
tinuity is generated without
these constraints, the color
there becomes a darker gray
than the colors defined at the
nodes of the rectangle

(d) A horizontal cross-section
through the middle of the gra-
dient shows that when optimiz-
ing for a C1 continuity of colors
without local constraints, the
color will “overshoot” the gray
colors assigned to the nodes
of the center rectangle

(e) A mesh with three gray
rectangles in the middle and
green on the sides

(f) DiffusionMesh generates
a gradient where the three
middle rectangles are the
same flat gray color

(g) When DiffusionMesh’s
local constraints are not used,
the generated gradient will
color the two gray rectangles
on the sides with a purple
color, and the middle gray
rectangle will have a green
tinge

(h) A horizontal cross-section
through the middle of the gra-
dient reveals that the strange
coloring is caused by the gra-
dients of the different color
channels exhibiting different
oscillation patterns

Figure 7: The colors defined on the nodes of each shape act as local constraints on what colors are allowed within the shape. These constraints
give artists some control over the colors inside the individual shapes of a mesh.

5.1 Effect of Local Color Constraints for Mesh Shapes
DiffusionMesh constrains the colors of gradients within each shape
of a mesh to be an interpolation of the colors assigned to the nodes
of the shape. Fig. 7 illustrates the benefits of incorporating these
local constraints into the diffusion process. The local constraints
provide artists with some control over the colors that will appear
in their meshes. Without those constraints, artists can only control
the colors on the boundaries of shapes. The gradient algorithm may
generate unexpected colors for the interior of shapes while trying to
satisfy the global smoothness constraints of the mesh. In extreme
cases, the gradient solution might even exhibit oscillation artifacts.
And in color drawings, where the gradient for each color channel is
computed separately, the lack of local color constraints might result
in spurious colors being introduced into a drawing.

5.2 Drawing Experience
DiffusionMesh is included in a vector drawing app called Omber
under the name Wrinkle-Free Gradient Engine. The app provides
a user interface for manipulating meshes that resembles that of 3D
polygonal modeling tools. Shapes can be drawn, welded together, or
split to create meshes of different topologies. The app is a JavaScript
program. The Java code of DiffusionMesh is compiled to JavaScript
using the GWT Java-to-JavaScript transpiler. Due to the slowness of
JavaScript when performing heavy calculations, portions of Diffu-
sionMesh are replaced with WebAssembly code written in C++ in
order to achieve performance similar to the original Java code.

As implemented in Omber, DiffusionMesh uses heuristics to

determine when to stop progressively refining a gradient. A shape
in a mesh will be retriangulated with a more dense triangulation if
the color value of any triangle point changes by more than 0.0117
from the same location in the previous triangulation (for color values
ranging from 0–1), if more than 1000 grid points are generated for
the shape during the triangulation, or if the grid spacing used in the
triangulation drops below 1/72 inch in size.

Various bitmap images were gathered, and vector drawings of
them were made by hand. Those drawings were rendered using
DiffusionMesh running on the web browser Chrome v73 using a
Haswell Core i5-3740s machine that runs at 2.9GHz-3.6GHz. For
each drawing, the time needed to render an initial image that can be
interacted with and the time needed to fully calculate the gradient
were measured. Twelve measurements were taken, and the average
of the last five measurements are shown in Table 2.

Although it can take a fair amount of time for a drawing to render
in full, DiffusionMesh is still suitable for interactive use due to its use
of progressive refinement and because it only needs to recalculate
gradients for shapes when they are changed.

There is a rare visual artifact that is occasionally noticeable when
working with DiffusionMesh. Currently, the colors along an edge
of a shape are a linear interpolation of the colors of nodes on either
end of the edge; whereas, the colors inside a shape are interpolated
in order to maximize smoothness. This difference in interpolation
sometimes results in the edges of shapes within a mesh being notice-
able (Fig. 14). The use of linear interpolation along shape edges is
intended to give artists full control over colors at the boundaries of



Table 2: Rendering times for some drawings

Initial Final Full
Shape Render Triangle Gradient

Drawing Count Time Count Time
Box (Fig. 8) 8 6ms 199 240ms
Hand (Fig. 9) 22 84ms 28816 2682ms
Butterfly (Fig. 10) 40 112ms 40545 3202ms
Apple (Fig. 11) 15 42ms 12189 1440ms
Dog (Fig. 12) 48 90ms 31589 3381ms
Face (Fig. 13) 227 270ms 173559 11236ms

Figure 8: DiffusionMesh’s vector graphics model can handle traditional
flat-shaded vector graphics

Figure 9: A small number of shapes is sufficient to specify the shading
of a hand

Figure 10: A drawing of a butterfly with a gradient involving many
different colors

Figure 11: A drawing of an apple with gradients showing some subtle
shading

Figure 12: Drawings can be made with multiple overlapping meshes.
A mesh can even overlap itself.

Figure 13: In this drawing, different parts of the body are modeled
on separate layers and are alpha composited together based on a
gradient of transparency values. The hair is made up of a hair texture
that is mapped using a gradient of UV coordinates.



(a) In this mesh, Diffusion-
Mesh will impose a linear
interpolation of colors over the
dotted edges

(b) The linear interpolation of
colors at those edges might
not match the smooth interpo-
lation that is calculated for the
gradients, potentially produc-
ing a visual “seam” at those
edges

(c) The reason for this visual
artifact can be more easily
observed by examining two
cross-sections of the colors
of the mesh: the red dotted
line over an edge and the blue
dashed line through the center
of a gradient

(d) Along the blue dashed line,
DiffusionMesh will produce a
curved interpolation of colors
in order to maintain a C1 con-
tinuity of colors. This differs
from the linear interpolation
along the edge, which makes
the edge appear as a seam.

Figure 14: Visual artifacts can appear if the linear interpolation of
colors on edges does not match the smooth interpolation of adjacent
gradients

shapes, but this amount of control might be unnecessary. Instead,
relaxing the constraints on edges so as to permit any type of interpo-
lation of colors would allow DiffusionMesh to incorporate more of
the diffusion process into the assignment of colors there, allowing
mesh edges to be less noticeable. Even without this change, this
artifact can be mitigated by adding additional nodes along an edge
and using those nodes to manually adjust the edge’s coloring to
closely match the coloring of neighboring gradients.

In addition, during the drawing process, it was observed that
although DiffusionMesh makes it much easier to create complex
gradients, it cannot be used blindly. A naive choice of shapes and
colors can produce poor gradients (Fig. 15). Because all the colors
specified on the nodes of the shape end up blending across the whole
shape and because the gradient of a shape depends on the gradients of
neighboring shapes as well, inexperienced artists can create meshes
with unexpected colors or uneven gradients, which can only be fixed
by retopologizing the mesh. Unsurprisingly, the best gradients tend
to result when the input mesh matches the topology of colors from
the image being modeled.

6 RELATED WORK

Vector drawing tools have traditionally offered simple procedural
gradients such as linear gradients or radial gradients that provide
limited artist control over colors, making it difficult for artists to
combine these simple gradients together into more complicated
gradients.

Some tools allow gradients to be defined using gradient meshes
[12], which are gradients represented as 3D surfaces such as Coons
patches. Although gradient meshes do provide artists with powerful
controls over colors, the mesh itself is limited to being topologically
a grid shape, which might not be suitable for objects with holes or
multiple appendages. A gradient mesh can also provide too many

(a) A bitmap image
of a white blurry line
and a black blurry
line

(b) Modeling the
image as a mesh
of vertical strips
matches the original
topology of colors

(c) The gradient
produced from a
mesh of vertical
strips resembles the
original image

(d) Modeling the
image as a mesh
of horizontal strips
does not match the
original topology of
colors

(e) The gradient pro-
duced from a mesh
of horizontal strips
appears splotchy,
and the lines of the
original image are
not obvious

(f) The gradient for
horizontal strips will
blend black, gray,
and white colors
together, resulting in
gray regions in the
middle of each strip

Figure 15: Artists must use care to ensure that mesh topologies
correctly model the intended shapes

control points to an artist for objects where fine control of colors is
only needed for a small section of the objects.

To circumvent this problem, gradient meshes have been extended
to support meshes of arbitrary topology [9]. Subdivision surfaces
can be used to calculate a gradient for the mesh, but this solution
technique requires color derivatives at nodes to have fixed values.
In practice, these derivative values are set to zero, resulting in “flat
spots” of color around control nodes, making it difficult to specify
more subtle gradients. The use of subdivision surfaces can also en-
counter problems when dealing with concave shapes in the topology.

Generalizations of barycentric coordinates extend the concept of
barycentric coordinates of triangles to arbitrary polygons [6]. This
allows for the filling of complex shapes with a smooth gradient of
colors based on colors defined on the exterior. Due to the lack of
control over gradients at the edges of shapes, it is difficult to create
more complex gradients that span multiple shapes.

Diffusion curves allow users to draw curves of colors on a canvas
[10]. Those colors are then diffused across the canvas to create a
smooth blend of those colors across the canvas. In the diffusion curve
model, artists may experience difficulties when making localized
changes to a drawing since the colors of any curve can diffuse
across the entire canvas. Small changes in one part of a drawing
also require solving a global optimization problem to recompute
the gradient for the whole canvas, which is inefficient. Since the
diffusion curve primitive spans an entire canvas, it does not support
the compositing of multiple layers by default. Overall, because
diffusion curves define a completely new graphics primitive that
exhibits poor compositing behavior, they don’t integrate well with
traditional vector graphics tools which use a model based on layers
of path primitives.

The traditional diffusion curve model is only able to generate
gradients with a C0 continuity of colors on either side of a curve.
Since this can result in visual artifacts at these seams, an additional



blur operation is allowed in the area surrounding curves to hide these
effects. One approach to avoiding these visual artifacts involves
providing more control over the diffusion process so as to reduce
the number of curves required for a drawing [1, 8]. Having only a
C0 continuity at curves results in a gradient calculation [4] that is
amenable to various performance optimizations [2, 11]. Unfortu-
nately, the use of blur operations makes it difficult for artists to create
drawings with specific colors at specific locations, and it requires
artists to specify extra blur parameters for each of the nodes in their
drawings.

The concept of diffusion curves has been extended to allow for the
specification of not only constraints on the colors of curves but con-
straints on color derivatives as well [5]. In particular, a C1 continuity
of colors on both sides of a curve can be achieved, allowing for a
smooth blending of colors spanning the curve. Generating diffusion
curve gradients with derivative constraints results in a biharmonic
system. Finite element methods have been used to solve this bihar-
monic system on a triangle mesh [3]. DiffusionMesh achieves its C1

continuity of colors by using a simpler approach of directly calculat-
ing its gradient on a set of Gouraud-shaded triangles. Although it is
possible to arrange diffusion curves so that they form meshes, just
as in DiffusionMesh, DiffusionMesh is specifically adapted for the
use of meshes: it has a user interface that supports the creation of
meshes; it takes advantage of the performance benefits of meshes; it
allows meshes to be composited; and it generates gradients that do
not exceed or “overshoot” the color values of individual shapes in a
mesh.

7 FUTURE WORK

Although DiffusionMesh is fast enough for interactive use, the ability
to use these techniques for animation would require much faster
methods for computing gradients.

In addition, although the gradients produced by DiffusionMesh
are visually satisfying, the mathematical foundations for the diffu-
sion process could be strengthened. Solution techniques derived
from finite element methods would be ideal since they would provide
for more flexibility in allowing varying triangle sizes in the rendered
triangle mesh. It is unclear whether finite element methods can be
adapted to incorporate the constraint that the colors within a shape
must be within the range of colors specified on the nodes defining
the shape though.

DiffusionMesh uses a linear interpolation of colors across trian-
gles in its rendered triangle meshes. This can lead to visual artifacts
at the seams between triangles because they lack a C1 continuity of
colors between them. In practice, DiffusionMesh refines its triangle
meshes to a level where this lack of C1 continuity is not noticeable,
but this often requires a large number of triangles. Since triangula-
tion makes up a large part of the rendering time of a gradient, both
performance and visual quality could be improved by using non-
linear interpolation of colors across triangles and coarser triangle
meshes.

8 CONCLUSION

DiffusionMesh successfully demonstrates how diffusion-style gra-
dients can be integrated into a traditional vector drawing system.
Closed path shapes with different colors assigned to their nodes can
be assembled into large meshes, allowing complex gradients to be
defined. DiffusionMesh uses simple discrete methods to generate a
mesh of Gouraud-shaded triangles that can be displayed easily by
basic graphics hardware. Although the performance of the gradient
diffusion code is too slow for real-time use, it is fast enough that its
latency can be hidden by executing it in a background thread, thus
providing enough performance to allow artists to interactively create
gradients.

ACKNOWLEDGMENTS

The box drawing (Fig. 8) was made by Salvador Clariana. The
butterfly drawing (Fig. 10) was made by Camilo Torres. The chibi
dog drawing (Fig. 12) is based off of art made by kirara-cecilvenes.

REFERENCES

[1] H. Bezerra, E. Eisemann, D. DeCarlo, and J. Thollot. Diffusion con-
straints for vector graphics. In Proc. NPAR, pp. 35–42. ACM, New
York, USA, 2010.

[2] J. C. Bowers, J. Leahey, and R. Wang. A ray tracing approach to
diffusion curves. Computer Graphics Forum, 30(4):1345–1352, June
2011.

[3] S. Boyé, P. Barla, and G. Guennebaud. A vectorial solver for free-form
vector gradients. ACM Transactions on Graphics, 31(6):173:1–173:9,
Nov. 2012.

[4] S. Carlsson. Sketch based coding of grey level images. Signal Process-
ing, 15(1):57–83, July 1988.

[5] M. Finch, J. Snyder, and H. Hoppe. Freeform vector graphics with con-
trolled thin-plate splines. ACM Transactions on Graphics, 30(6):166:1–
166:10, Dec. 2011.

[6] M. S. Floater. Mean value coordinates. Computer Aided Geometric
Design, 20(1):19–27, Mar. 2003.

[7] D. Jackson, J. Fujisawa, J. Ferraiolo, J. Watt, D. Schepers, C. McCor-
mack, C. Lilley, A. Grasso, P. Dengler, and E. Dahlström. Scalable
vector graphics (SVG) 1.1 (second edition). W3C recommendation,
W3C, Aug. 2011.

[8] S. Jeschke. Generalized diffusion curves: An improved vector rep-
resentation for smooth-shaded images. Computer Graphics Forum,
35(2):71–79, May 2016.

[9] H. Lieng, J. Kosinka, J. Shen, and N. Dodgson. A colour interpolation
scheme for topologically unrestricted gradient meshes. Computer
Graphics Forum, 36(6):112–121, Sept. 2017.

[10] A. Orzan, A. Bousseau, H. Winnemöller, P. Barla, J. Thollot, and
D. Salesin. Diffusion curves: A vector representation for smooth-
shaded images. ACM Transactions on Graphics, 27(3):92:1–92:8, Aug.
2008.

[11] R. Prévost, W. Jarosz, and O. Sorkine-Hornung. A vectorial framework
for ray traced diffusion curves. Computer Graphics Forum, 34(1):253–
264, Feb. 2015.

[12] J. Sun, L. Liang, F. Wen, and H.-Y. Shum. Image vectorization using
optimized gradient meshes. ACM Transactions on Graphics, 26(3),
July 2007.


	Introduction
	Gradient Model
	How Gradients Are Specified
	Gradient Properties

	Rendering
	Triangulation
	Diffusion

	Performance
	Results and Discussion
	Effect of Local Color Constraints for Mesh Shapes
	Drawing Experience

	Related Work
	Future Work
	Conclusion

